

Identifying Novel CAN Bus Attack Types at Runtime

Sumaita Sadia Rahman ssrahman@ncsu.edu Caio Batista de Melo cbatist4@ncsu.edu

Problem & Motivation

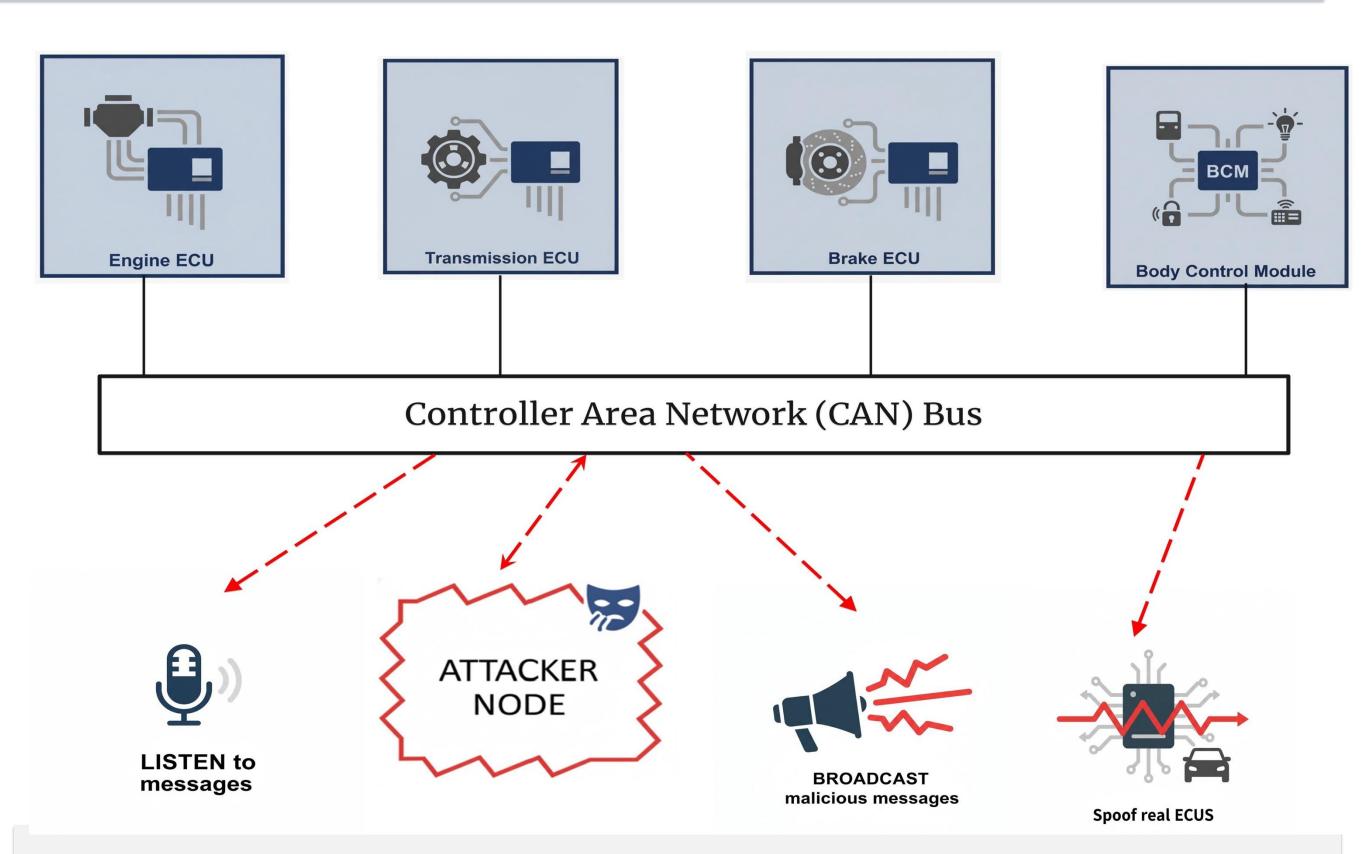


Fig 1: A simplified CAN bus schematic showing an attacker node's ability to listen to, broadcast, and spoof messages between ECUs.

- Messages on CAN bus do not have security features, and the network is vulnerable to attacks
- Significant work has focused on detecting intrusions on the CAN bus; however, few frameworks have considered post-detection classification
- Existing classification assume that system engineers know all possible attack types at design time. But unfortunately, that is not always true

Goal

Allow vehicles to identify novel CAN bus attack types

Our Approach

- Clustering-based metrics identify the number of different attack types in the dataset
- > Our framework can detect a different number of types detected as more data is added
- ➤ Novelty signal: rerun clustering when a new attack block is added; if optimal clusters increase or silhouette score increases by a relevant threshold, we may have encountered a novel attack type

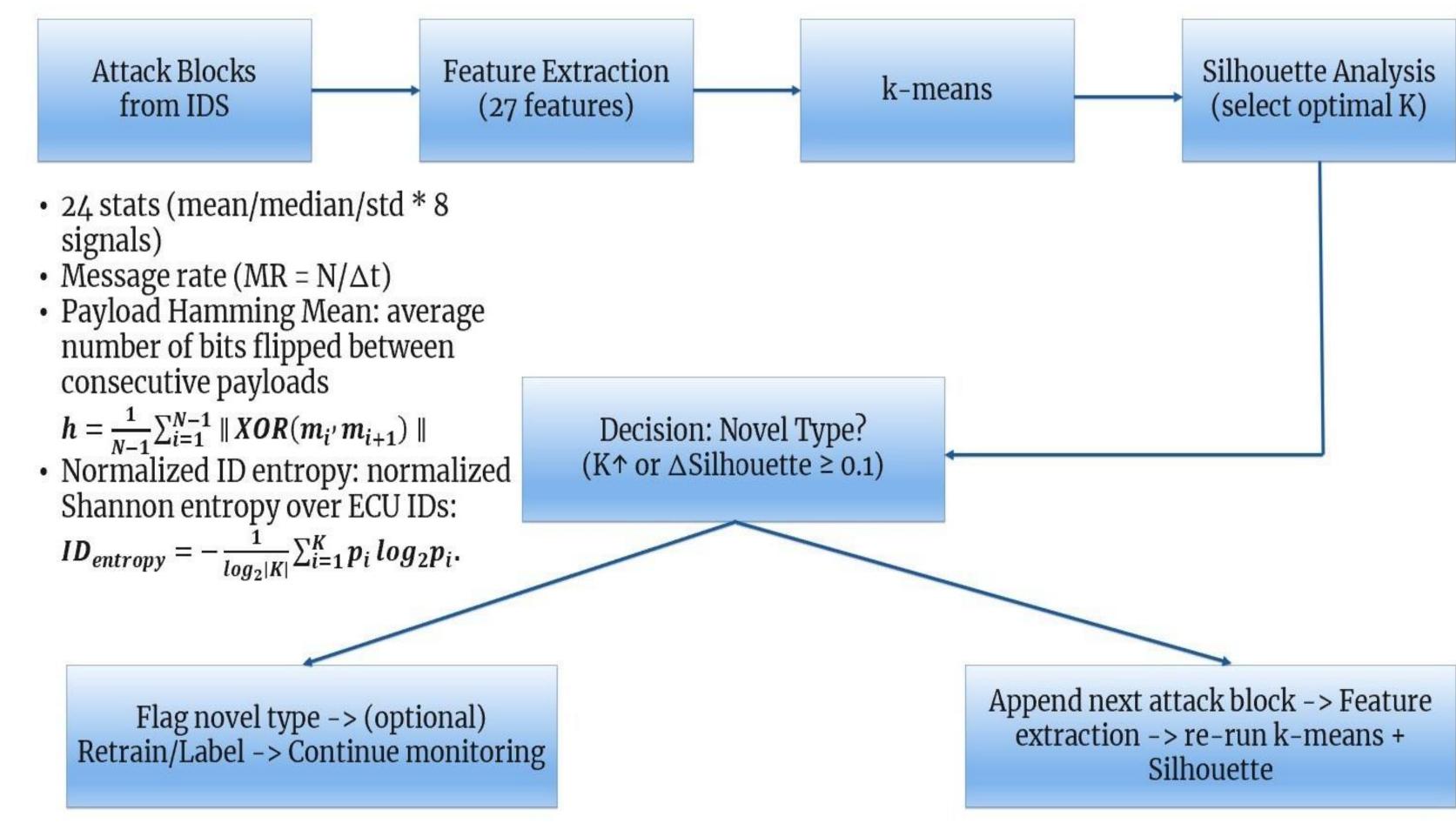


Fig 2: Runtime pipeline: attack blocks are summarized into 27 features, clustered, and reclustered as new blocks are added; a novel attack type is indicated when the optimal number of clusters increases, or the Silhouette score increases by ≥ 0.1.

Clustering & Metrics

- > K-means to group attack block
- ➤ Silhouette: values in [-1, +1] range; 0.7+ indicates strong clusters
- ➤ Adjusted Rand Index (ARI): values in [-1, +1] range; +1 indicates identical groupings, o indicates close to random groupings.
- > Data: two literature datasets, Car-Hacking and Survival-IDS

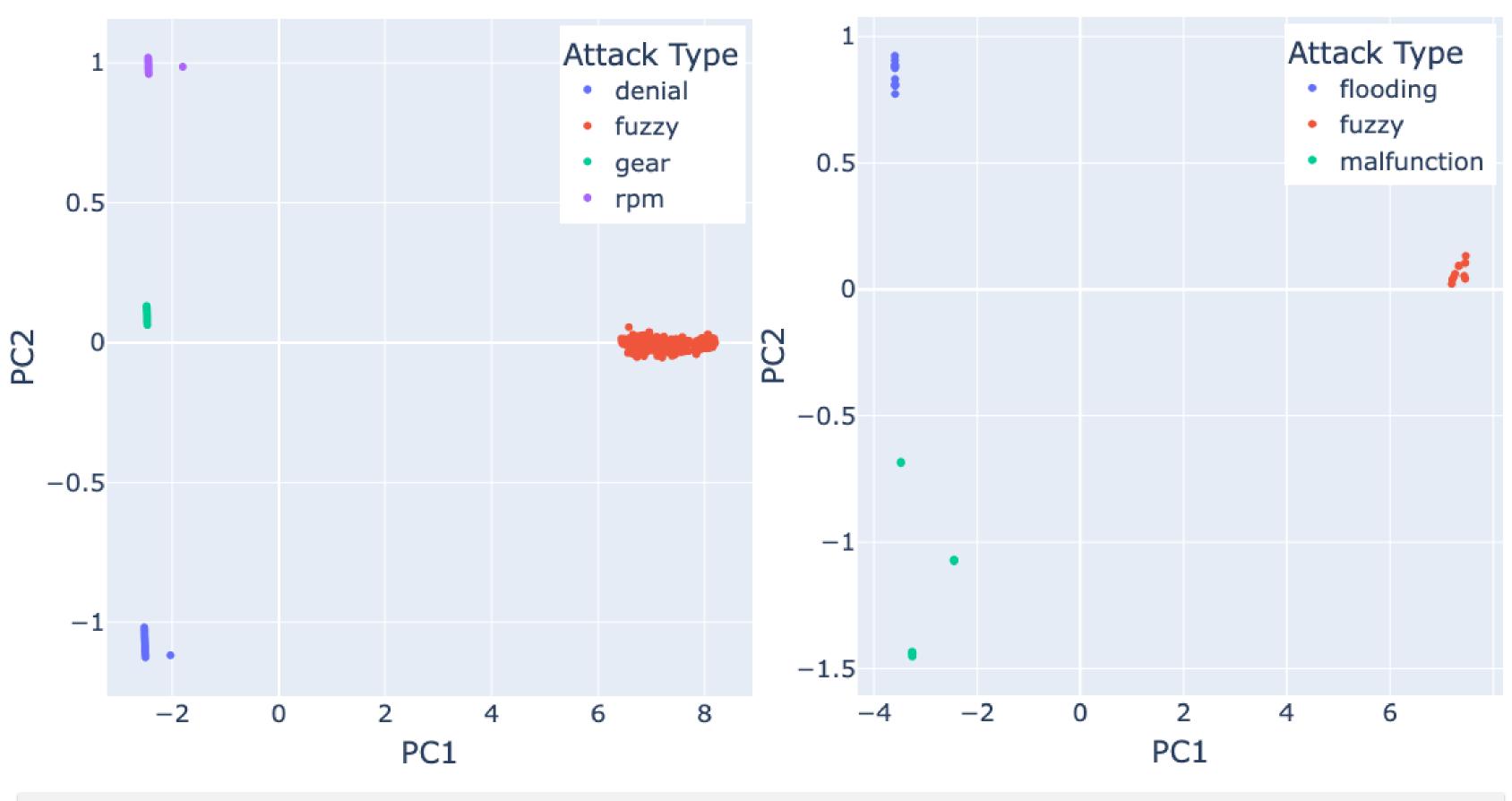


Fig 3: PCA visualization for Car-Hacking (left) and Survival-IDS (right)

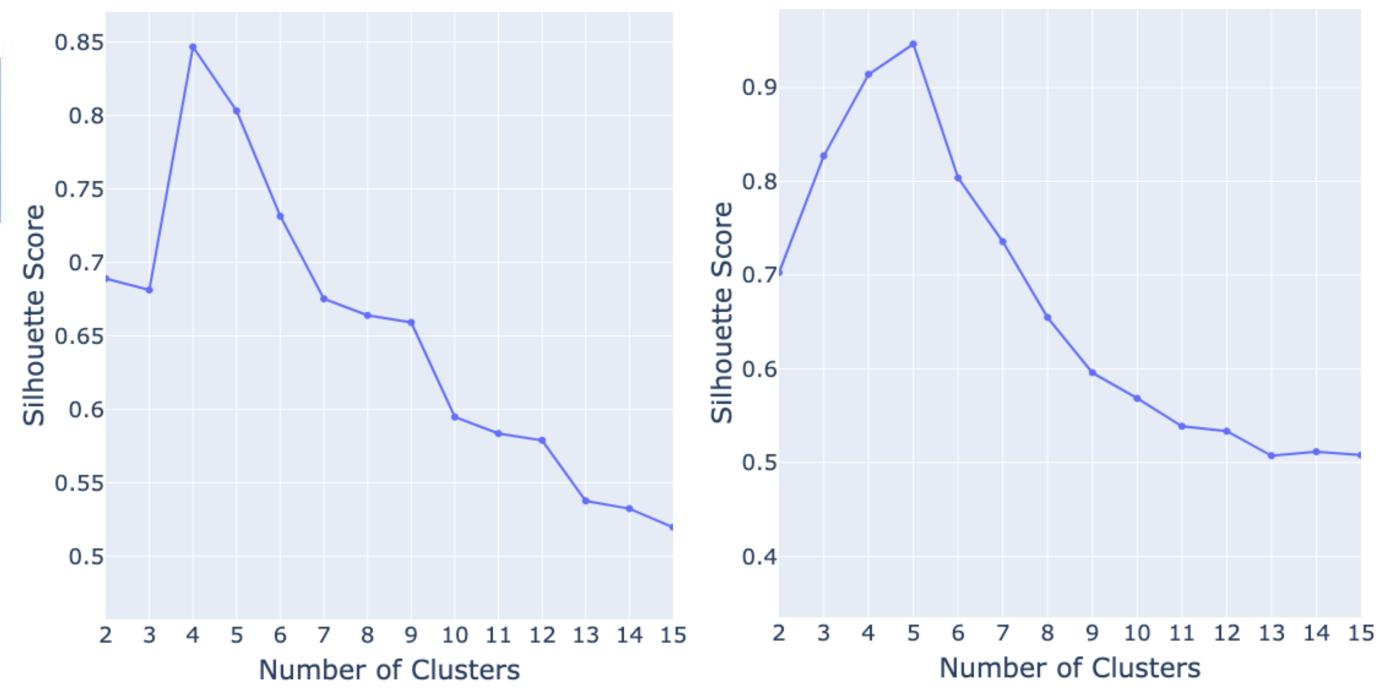


Fig 4: Silhouette Analysis for Car-Hacking (left) and Survival-IDS (right)

R	es	ul	ts

Dataset/Attack	Clusters ¹	ARI ¹	Blocks Added	ARI ²
Car-Hacking Denial of service	3	1.00	5	1.00
Fuzzy	4	0.99	1	1.00
Drive gear spoofing	3	1.00	19	1.00
RPM gauge spoofing	3	1.00	4	1.00
Survival-IDS Flooding	4	0.65	1	0.67
Fuzzy	4	0.72	2	0.75
Malfunction	2	1.00	1	1.00

Key Insights & Next Steps

- ➤ Car-Hacking: Perfect Grouping → ARI = +1
- Survival-IDS: Optimal K = 5 (vs. 3 types); malfunction blocks were separated; with more data, malfunction points could be more concentrated
- ➤ Novelty detection: Method quickly identifies a novel attack type not seen previously, after at most two data points in most cases
- ➤ **Takeaway:** A clustering-based methodology that effectively (i) identifies when a novel attack type is encountered and (ii) groups same-type attacks.
- ➤ Next steps: Expand analysis to more datasets, connect with state-of-the-art detection system to evaluate latency and footprint at runtime

NML@ICDM2025